Group 6

ARUP FSGEC

THE FANTASTIC STRUCTURAL AND GEOTECHNICAL ENGINEERS CONSULTANCY

Isabella LONG, Bihi MOHAMED, Max OSTROVERHY, Ciying WANG, Emily WANG, Hanaa YAKOUB

Brief Details

Location: 53,4656, 02.2986 Manchester

Soil: Dense Clay

Building type: Residential: 10 storey with 1 storey basement

Old Trafford area- residential, stadium, River Irwell

Design loads for the structure:: Imposed wind load

For facades a and b wall dimensions 42 * 35.5m

- Windward 0.91 (kN/m^2)
- leeward 0.57 (kN/m^2)

For facades c and d wall dimensions 32 * 35.5m

• Windward 0.89 (kN/m^2)

• Leeward 0.55 (kN/m^2) up to height b

- Windward 1.79 (kN/m^2)
- Leeward 1.12 (kN/m^2)

between heights h and b

Design loads for the structure: imposed, snow load

$$s = \mu_i C_e C_t s_k$$

Assumptions & Values from Eurocode 1:

- **Flat roof** snow load shape coefficient $\mu_i = 0.8$
- Surrounding is an urban landscape of normal topography exposure coefficient $C_{p} = 1.0$
- Roof does not have high thermal transmittance $C_t = 1$
- Altitude A 30m
- **Zone number** Z 3
- **Building is located in the UK** Snow load relationship

$$s_k = 0,140Z - 0,1 + \frac{A}{501}$$

$$s = 0.304 \ kN/m^2$$

The configuration of the structural elements for beams, and floors slabs

Parameters	Values
total load	3.7
MEP	0.1
tiles	0.3
ceiling	0.1
composite slab	3.2
occupancy	2
moveable partitions	1.2
F.S dead	1.35
F.S live	1.5
total load+ F.S.	5.475 (kN/m^2)

	5.5	(kN/m^2)
load used from table		
max span	3.65	m
secondary beams	2	
new span (x)	2.5	
new span (y)	2.67	
slab selected:	10	cm,
		concrete
	0.7	mm, steel
slab weight	190	(kg/m^29
total slab load	2.362	kN/m^2
total floor area	13440	
total slab load	31745.28	kN

	ground	32	42	4
wall dimensions	other 9 floors	32	42	3.5
brick dimensions	16	15	30	cm
brick mass	2.05	kg		
	ground	592	m^2	
building wall area	other 9 floors	4662	m^3	
dead load on	ground	5.29	kN/m	
perimeter beam	other 9 floors	41.63	kN/m	
load	3.7	(kN/m^2)		
slab dead load	2.4	(kN/m^2)		
slab area	56	m^2		
total load for each bay	341.6	kN		
total load on each beam	170.8	kN		

Beam iteration 1

		1	
Deflections:			
E steel	21000000		
Ι	1/200		
2 Point loads	x (7m)	0.00000113	m^4
	y (8m)	0.000217	m^4
Uniformly distributed load	x 170.8kN/ 7m/ = 24.4kN/m	0.000104	m^4
	y 170.8kN/8m= 21.35kN/m	0.000136	m^4
worst case	0.000217	m^4	
	21688.9	cm^4	
IPE beam selected	<u>IPE400</u>		
Weight	66.3	kg/m	
	0.64974	kN/m	

			7m	
			Plan v	iew of pri
_				
	total beam length	primary	434m	
		secondary	720m	
		Total	1154m	
	total beam load per floor	749.79996	kN	
	total beam load for building	7497.9996	kN	

	8m 32m
7m 42m	-

Plan view of primary and secondary beams

Columns Iteration 1

Levels	Live Loads(kN)	Deadloads (kN)	Total (kN)	Cumulative (kN)
Roof	408.56	6306.22	6714.72	6714.72
7	2688	6306.22	8994.22	42691.60
3	2688	6306.22	8994.22	78668.48
1	2688	3617.06	6305.06	93967.76

Туре	Levels	Load (kN)	Load taken by each Bay (kN)	Load taken by edge columns (kN)	Load taken by central columns (kN)	Tallest floor (m)
Α	7-10	30711.417	1279.64	1535.574	1279.64	3.5
В	3-6	57104.14	2379.34	2855.21	2379.334	3.5
С	Basement, 1-2	70398.84	2933.28	3519.94	2933.28	4

Column Profile	Design Axial Force resistance	load (kN/m)	number of floors	total height (m)	total length of columns per floor (m)	column load per floor (kN)
UC 203x203x60	2390	0.588	4	14	490	288.12
UC 254x254x107	4360	1.0486	4	14	490	513.81
UC 254x254x132	5260	1.2936	2	7.5	262.5	339.57
						1141.50

Combination of actions

Combination of	actions: ULS	PERMA	NENT	1					VA	RIABLE						1	
		dead	loads	live	load (bui	lding)	live	load (ro	of)		snow load		wind load				
Combination	Load type	gammaG	sumG	gammaQb	psi0b	bQ	ammaC	psi0r	rQ	gammaQs	psi0s	sQ	gammaQw	psi0w	wQ	RESULTS	
1	live load (building and roof)	1.35	2.362	1.5	1	2	1.5	1	Î			3		84		6.1887	
2	live load (building)	1.35	2.362	1.5	1	2				1.5	0.5	0.30394	1.5	0.6		6.416655	
3	snow load	1.35	2.362	1.5	0.7	2				1.5	1	0.30394	1.5	0.6		5.74461	
4	wind load	1.35	2.362	1.5	0.7	2				1.5	0.5	0.30394	1.5	1		5.516655	
																6.416655	Worst case
		57														kN/m2	Unit
Combination of	actions: SLS	PERMA	NENT						VA	RIABLE							
		dead	loads	live	load (buil	lding)	live	load (ro	of)		snow load		w	ind load			
Combination	Load type	gammaG	sumG	gammaQb	psi0b	bQ	ammaC	psi0r	rQ	gammaQs	psi0s	sQ	gammaQw	psi0w	wQ	RESULTS	
1	live load (building and roof)	1	2.362	1	1	2	1	1	Î							4.362	
2	live load (building)	1	2.362	1	1	2				1	0.5	0.30394	1	0.6		4.51397	
3	snow load	1	2.362	1	0.7	2				1	1	0.30394	1	0.6		4.06594	
838	wind load		2.362	<u></u>	0.7	2					0.5	0.30394				3.91397	

* psi factor: from EC0 Table A1.1

4.51397 Wors kN/m2 Unit

Worst case

* gama (safety factor): from EC0 Table A2.4

* combination equation: EC0 Eq. 6.10

* assume no live loads on roof

* The loads calculated are only vertical, so no wind loads on slabs & beams

First iteration Checks for the ULS and SLS of Columns

Initial geometry	Section	A (m^2)	fy (kPa)	Nc,Rd(kN)	Ned(kN)	Compression	<1	
column 7-10	UC 203 x 203 x 60	0.00764	355000	2.71E+03	3254.470892	1.20E+00	no	
column 3-6	UC 254x254x107	0.0136	355000	4.83E+03	5909.669105	1.22E+00	no	T
column 1-2	UC 254x254x132	0.0168	355000	5.96E+03	7031.607795	1.18E+00	no	T
Initial geometry	Section	L(m)	Wpl,y(m^3)	Wpl,z(m^3)	Y_M0	My,Rd(kNm)	Mz,Rd(kNm)	Ť
column 7-10	UC 203 x 203 x 60	3.5	0.0006561	0.0003053	1	232.9155	108.3815	
column 3-6	UC 254x254x107	3.5	0.001484	0.000697	1	526.82	247.435	
column 1-2	UC 254x254x132	4	0.001869	0.0008784	1	663.495	311.832	Ţ
		load_y(kN)	load_z(kN)	My,Ed(kNm)	Mz,Ed(kNm)	Ratio	<1	
		3249.81	3249.81	5687.1675	5687.1675	7.81E+01	no	
		5901.27	5901.27	10327.2225	10327.2225	6.26E+01	no	
Initial geometry	Section	L(m)	E (kPa)	l(m^4)	Ncr(kN)	λ_	a	Ť
column 7-10	UC 203 x 203 x 60	3.5	21000000	0.00002065	3493.839958	0.8810678457	0.49	1
column 3-6	UC 254x254x107	3.5	21000000	0.00005931	10034.84978	0.6936305184	0.49	
column 1-2	UC 254x254x132	4	21000000	0.00007535	9760.730328	0.7816775883	0.49	
		γ_M1	ø	x	Nb,Rd	Ned(kN)	Bucking	
		1	1.055001897	6.12E-01	1.66E+03	3254.470892	1.96E+00	
		1	0.861501125	7.29E-01	3.52E+03	5909.669105	1.68E+00	j.
		1	0.9480209351	6.74E-01	4.02E+03	7031.607795	1.75E+00	
SLS Check	on column							
Initial geometry	Section	storey height(m)	deflection allowance(m)	w (kN/m)	l (cm4)	Max horizontal deflection (m	n) allowed?	
column 7-10	UC 203 x 203 x 60	3.5	0.01166666667	54.59	11335	0.9430	no	
column 3-6	UC 254x254x107	3.5	0.01166666667	54.59	22765	0.4696	no	
column 1-2	UC 254x254x132	4	0.01333333333	54.59	30234	0.0431	no	

Vertical load calculation with braces

Load type	magnitude (kN/m)	Applied member(s)	Beam length	Total load (kN)	Total vertical load (kN)
		interior beams	Ŭ		
dead	9.448	(+roof)	6220	58766.56	119871.9
live	8	interior beams (-roof)	5598	44784	
		interior beams (only			
snow	1.21576	roof)	622	756.2027	
dead +					
dead		exterior beams x (-			
(perimeter)	9.4017	roof)	756	7107.685	
dead		exterior beams x			
(perimeter)	4.724	(only roof)	84	396.816	
dead + dead (perimeter)	9.4017	exterior beams y (- roof)	576	5415.379	
		exterior beams y (-			
live	4	roof)	576	2304	
snow	0.60788	exterior beams y (only roof)	64	38.90432	
dead	4.724	exterior beams y (only roof)	64	302.336	

Load experienced on foundations not considering the factors of safety.

Geotechnical background

Soil parameters

Undrained Shear strength Cu (kPa)	c' , cohesion (kPa)	E' Youngs Modulus (MPa)	φ , Friction angle (°)	Su Shear strength	Soil material
200 Unsaturated unit weight above water level (kg/m)	5 Saturated unit weight below water level (kg/m)	40 Water level below ground (meters)	24	200	Dense Clay
17.5	19	11			

The water level is at 11 meter as sourced from the nearest water borehole where water struck at 11 meters depth, although the resting water level is at 14.8 meter one averaged with a unsaturated unit weight of 19 and saturated unit weight of 17.5. [i]

 [i] Blair drilling. (2020). Borehole record form. Available: http://scans.bgs.ac.uk/sobi_scans/boreholes/20862786/images/20862778.html. Last accessed 02/04/2021. SK22 2NS BGS ID: 20862786 : BGS Reference: SK08NW63

Initial design approach

Table 7.1 Choice of foundation

	Typical solution	Alternative solution
First choice	Pad or strip foundations	-
Second choice	Pad or strip foundations associated with ground improvement	Raft with/without ground improvement
Third choice	Piled foundation	Piled raft foundation

The Institution of Structural Engineers Manual for the geotechnical design of structures to Eurocode 7 117

The initial geotechnical approach was to begin with a raft design as recommended by EC7 Table 7.1, whereby it is better to use pile design as the raft will be be very thick.

Thickness (m)	Wf	σ _{vo} ' (kPa)	q' (kPa)
1	32256	87.5	-25.32161057
1.4	45158.4	94.5	-22.72161057
1.8	58060.8	101.5	-20.12161057
2.2	70963.2	108.5	-17.52161057
2.6	83865.6	115.5	-14.92161057
3	96768	122.5	-12.32161057
3.4	109670	129.5	-9.721610565
3.8	122573	136.5	-7.121610565
4.2	135475	143.5	-4.521610565
4.6	148378	150.5	-1.921610565
5	161280	157.5	0.678389435

ULS Pile Design

The pile design parameters can calculated by comparing the incident load on the piles and the shaft friction and end bearing capacity load by 4. The load Q applied on individual piles can be plot in order choose a pile diameter and depth at which the pile can resist incident loads.

Pile cap Design

Steel sheet between connection and ramped connection allowing for transition of material properties and load transfer. For the pile cap dimensions we can use a recommended guide for the dimensions and thickness.

Whereby the S is spacing and α = 2-3 and is spacing factor of piles, it depends on ground conditions with the pile \emptyset being the diameter of of the piles.

SLS Check - Settlements

Assumption: 1 stratum, deep homogenous clay layer whereby the D, is $\frac{2}{3}$ D of 24 meters.

SLS Check - settlement

Consolidation settlement

Assumptions : for oedometer test, We can calculate the consolidation settlement based on the ratio changes of stress in soil layer and void ratio's, we can source this by using a oedometer test similar to clay at site. The sourced clay as has a E_u/C_u of 200 and our clay as a E_u/C_u of 300 hence within the same group in terms of a similar PI greater than 50.

Depth	Initial eo	Final er	Δe	$\Delta \sigma_{v}'$	Mv
6.5	1.58	1.525	0.055	31.45	0.000677832
8.75	1.575	1.552	0.023	15.725	0.000568015
11	1.57	1.55	0.02	12.58	0.000618609
20.75	1.54	1.536	0.004	3.145	0.000500732
30.5	1.525	1.524	0.001	1.258	0.000314817

Depth	Average stress	mv	Consolidation Settlement	Total settlement
6.5	71.225	0.00067783	0.31381099	2.81097765
8.75	66.6125	0.00056802	0.331072978	
11	68.54	0.00061861	0.466394066	
20.75	78.4475	0.00050073	0.815084874	
30.5	92.129	0.00031482	0.884614743	

Room for error with great uncertainties at times.

 $\rho_{Total} = \rho_{immidieate} + \rho_{consoldiation} = 0.0116 + 2.8110 = 2.8226$ meters

Retaining Wall design

4m

embedment

depth d

basement

Basement plan 1 2 retaining walls across shorter walls of basement 42m Surcharge 12kW/m^2 ground level tension Hc

Initial assumptions:

- Dense clay is cohesive, so will fail with a tension crack
- Clay is dry as the water level is deep at 11m, and unit weight is 17.5kN/m^3
- Unit weight of concrete wall is 24kN/m^3
- Surcharge is an unfavourable action when considering the toppling or overturning moment checks
- Surcharge of 12kPa accounting for vehicles

Table 2: input parameters

Parameter	Value	Units		
angle Φ'	24	degrees		
γ factor 1.25	19.6	degrees		
cohesion c'	5	kPa		
γ factor 1.25	4	kPa		
unit weight	17.5	kNm^3		
Active			Passiv	e
	0.421			2.37
Ka	0.497	0.	Kp	2.01
	0.880	m	-	
Hc	0.648	m		

Table 3: Partial factors

Friction angle	ΥΦ'	1 1.25	M1 M2	DA1-1	DA1-2
Cohesion	Ύc	1 1.25	M1 M2	A1+M1	A2+M2
Permanent loads	ΥG	1.35 1	A1 A2	Earth pressures, wall weight	
Variable loads	YQ	1.5 1.3	A1 A2	surcharge	

Table 4: Moments checks

Moments											
					F				Total Moment		
	Factive	Distance		Moment	r surcharge	Distance		Moment	(kNm/m		
destabilising	(kN/m)	(m)	ΥG	(kNm/m)	(kN/m)	(m)	rq	(kNm/m)			
ucotuomong	(kit/ill)	(11)	10	(anity in)	(kityiii)			(kitin/in))		
comb. 1	117.9	1.7	1.35	271.6	30.4	3	1.5	136.6	408.3		
comb. 2	1325.5	3.8	1.35	6770.9	71.79	6	1.5	644.9	7415.9		
	Fpassive	Distance		Moment(k	Fprop	Distance		Moment	Fwall		Total moment
stabilising	(kN/m)	(m)	ΥG	Nm/m)	(kN/m)	(m)	ΥG	(kNm/m)	(kN/m)	ΥG	(kNm/m)
comb. 1	113.8	0.67	1	75.9	34.5	6	1	206.9	72	1	282.7
comb. 2	1216.1	2.67	1	3242.9	181.03	12	1	2172.4	144	1	5415.3
		Total									
	Total	moment									
2000.0000000000000000000000000000000000	Moment	(kNm/m									
SLS check	(kNm/m))									
	100.0	282.7+7									
comb. 1	408.3	2w^2									
comb. 2	7415.9	5415.3+ 144w^2									
COMD. 2	/415.9	144W-2	width	1							
			of								
Fact	or of safety 3		wall:								
comb. 1	1224.9	13.1	3.6m								
comb. 2	22247.6	116.9	10.8m								
				1							

Retaining wall based on the finite element model in Plaxis

Principal effective stress at final stage

Home size = 0.07m (Sevent 17 at hole (60))

Deformed mesh at final stage

BALL T *** 10.00 3.00 10.00 4.01 -10.04 Hear shree I was Names one + 11 Details I Deneri 21 at task 1242 meson case + 5.36 M/H² Denset (H.a. Nale (H)

Maximum shear stress at final stage

Total y displacement at final stage

Plastic points at final stage, showing shear failure plane

Design of the structural elements GSA

Iteration 1	material	type	section
column 1-2	S355 steel	UC	254x254x132
column 3-6	S355 steel	UC	254x254x107
column 7-10	S355 steel	UC	203x203x60
beam x	S355 steel	IPE	IPE 400
beam y	S355 steel	IPE	IPE 400
secondary beams	S355 steel	IPE	IPE 400

Axonometric view

<u> </u>	 	 	

Iteration 2,3,4 and 5	material	type	section
column 1-2	S355 steel	UC	254x254x167
column 3-6	S355 steel UC 254x254x132		254x254x132
column 7-10	S355 steel	UC	203x203x86
beam x	S355 steel	IPE	IPE 400
beam y	S355 steel	IPE	IPE 400
secondary beams	S355 steel	IPE	IPE 400
circular braces	S355 steel	circular	diameter=323.9,wall=12.5

ULS & SLS of optimised structural components

			A (cm^2)	b (mm)	tf (mm)	tw (mm)	r (mm)	Av (mm^2)	fy (MPa)	V_c,Rd (kN)	V_Ed (kN)	ratio	<1?
ULS - shearing	ULS - shearing	7m side	84.46	180	13.5	8.6	21	4269.1	355	874.99	27.34	0.03	yes
		8m side	04.40	100	15.5	0.0	21	4205.1	555	074.55	31.25	0.04	yes
								W_pl(cm^3)	fy (MPa)	M_c,Rd	M_Ed	ratio	<1?
	ULS- bending	7m side						1307	355	463.985	47.85	0.10	yes
Beams		8m side						1307	300	403.905	62.49	0.13	yes
	ULS- bending + shear					V_Ed/ V_c,I	Rd <0.5, eff	fect neglected					
		s		w (kN/m)	E (MPa)	l (cm4)	max v	ertical deflecti	on (m)	Allowed def	ection (spa	an/200)	allowed?
	SLS - vertical deflection	7m side		5.50	210000	23128		0.0035			0.035		yes
		8m side		5.50	210000	23128		0.0060			0.04		yes

	10		E (kPa)	L.	fy (kPa)	A (m^2)	Ncr (z-z)	h/b	buckling	Lamda	imperfect	φ	х	N_b,Rd	N_Ed (kN)	ratio	<1?
	ULS - buckling	UC 203 x 203 x 100	210000000	0.0000206	355000	0.00764	3493.839958	1.018	С	0.881	0.49	1.06	0.61	1658.53	3266.36	1.97	no
	ULS - DUCKING	UC 254x254x132	210000000	0.0000593	355000	0.0136	10034.84978	1.031	с	0.694	0.49	0.86	0.73	3517.82	5969.99	1.70	no
		UC 254x254x167	210000000	0.0000753	355000	0.0168	12748.709	1.057	С	0.684	0.49	0.85	0.73	4381.08	7142.97	1.63	no
												A (m^2)	fy (kPa)	l_c,Rd (kN	N_Ed (kN)	ratio	<1?
Columns	ULS - compression	UC 203 x 203 x 100										0.00764	355000	2712.2	3266.36	1.20	no
Columns	0L3 - compression	UC 254x254x132										0.0136	355000	4828	5969.99	1.24	no
		UC 254x254x167										0.0168	355000	5964	7142.97	1.20	no
								w (kN/m)	E (MPa)	l (cm4)	max verti	cal deflec	ction (m)	Allowed d	eflection (he	ight/300)	allowed?
	SLS - horizontal deflection	UC 203 x 203 x 100						54.59	210000	11335		1.1472			0.0117		no
	SLS - HUNZUNIAI GENECIUM	UC 254x254x132						54.59	210000	22765		0.5712			0.0117		no
		UC 254x254x167						54.59	210000	30234		0.0459			0.0133		no

For the braced frame system, the following checks can be made:

- 1. Frame deflection: unit load method (Datoo, 2015)
- 2. Frame stability: any frame structure should be examined for susceptibility to sway instability into second order effect. (Eng, 2009)
- 3. Software simulation: revit, GSA

Iterations and adjustments

Y side section view SLS wind deformation

X side section view SLS wind deformation

- The main problem is lateral drift
- We need braces
- Live load deformation is not the most important

Resolved Element Translation, U : ` Output axis: global 700.0 mm
600.0 mm
= 500.0 mm
400.0 mm
300.0 mm
200.0 mm
100.0 mm
0.0 mm
Case: C8 : 4.1 SLS main wind load

Resolved Element Translation, |U|: Output axis: global 80.00 mm

Case: C6 : 1.1- SLS main live load

Data scaling unreliable - Regenerate

70.00 mm 60.00 mm 50.00 mm 40.00 mm 30.00 mm

20.00 mm 10.00 mm 0.0 mm

X side section view SLS wind deformation with new columns

	-	- And and a state of the local division of t		
a series and the series of the	- Inning -	- January -		
_	-			
			-	

Braces

Iteration 3, big X braces on all side

Iteration 4, 4 X braces on all sides

Iteration 5, symmetrical portal bracing on all sides

esolved Element Translation, U Dutput axis: global 80.00 mm
70.00 mm
60.00 mm
50.00 mm
40.00 mm
30.00 mm
20.00 mm
10.00 mm
0.0 mm

Final iteration and justifications

Chosen iteration (number 4)

- Iteration 4 is the most optimal
- Might need to put braces just on one side to not have problems due to thermal expansion
- For further iterations we could change braces type to make the structure less heavy

Thank you!

ARUP FSGEC

THE FANTASTIC STRUCTURAL AND GEOTECHNICAL ENGINEERS CONSULTANCY